(0) Obligation:
The Runtime Complexity (innermost) of the given
CpxTRS could be proven to be
BOUNDS(1, n^1).
The TRS R consists of the following rules:
active(f(a, X, X)) → mark(f(X, b, b))
active(b) → mark(a)
active(f(X1, X2, X3)) → f(X1, active(X2), X3)
f(X1, mark(X2), X3) → mark(f(X1, X2, X3))
proper(f(X1, X2, X3)) → f(proper(X1), proper(X2), proper(X3))
proper(a) → ok(a)
proper(b) → ok(b)
f(ok(X1), ok(X2), ok(X3)) → ok(f(X1, X2, X3))
top(mark(X)) → top(proper(X))
top(ok(X)) → top(active(X))
Rewrite Strategy: INNERMOST
(1) NestedDefinedSymbolProof (BOTH BOUNDS(ID, ID) transformation)
The following defined symbols can occur below the 0th argument of top: proper, active
The following defined symbols can occur below the 0th argument of proper: proper, active
The following defined symbols can occur below the 0th argument of active: proper, active
Hence, the left-hand sides of the following rules are not basic-reachable and can be removed:
active(f(a, X, X)) → mark(f(X, b, b))
active(f(X1, X2, X3)) → f(X1, active(X2), X3)
proper(f(X1, X2, X3)) → f(proper(X1), proper(X2), proper(X3))
(2) Obligation:
The Runtime Complexity (innermost) of the given
CpxTRS could be proven to be
BOUNDS(1, n^1).
The TRS R consists of the following rules:
top(ok(X)) → top(active(X))
proper(b) → ok(b)
f(ok(X1), ok(X2), ok(X3)) → ok(f(X1, X2, X3))
active(b) → mark(a)
f(X1, mark(X2), X3) → mark(f(X1, X2, X3))
top(mark(X)) → top(proper(X))
proper(a) → ok(a)
Rewrite Strategy: INNERMOST
(3) CpxTrsMatchBoundsTAProof (EQUIVALENT transformation)
A linear upper bound on the runtime complexity of the TRS R could be shown with a Match-Bound[TAB_LEFTLINEAR,TAB_NONLEFTLINEAR] (for contructor-based start-terms) of 4.
The compatible tree automaton used to show the Match-Boundedness (for constructor-based start-terms) is represented by:
final states : [1, 2, 3, 4]
transitions:
ok0(0) → 0
b0() → 0
mark0(0) → 0
a0() → 0
top0(0) → 1
proper0(0) → 2
f0(0, 0, 0) → 3
active0(0) → 4
active1(0) → 5
top1(5) → 1
b1() → 6
ok1(6) → 2
f1(0, 0, 0) → 7
ok1(7) → 3
a1() → 8
mark1(8) → 4
f1(0, 0, 0) → 9
mark1(9) → 3
proper1(0) → 10
top1(10) → 1
a1() → 11
ok1(11) → 2
ok1(6) → 10
ok1(7) → 7
ok1(7) → 9
mark1(8) → 5
mark1(9) → 7
mark1(9) → 9
ok1(11) → 10
active2(6) → 12
top2(12) → 1
active2(11) → 12
proper2(8) → 13
top2(13) → 1
a2() → 14
mark2(14) → 12
a2() → 15
ok2(15) → 13
active3(15) → 16
top3(16) → 1
proper3(14) → 17
top3(17) → 1
a3() → 18
ok3(18) → 17
active4(18) → 19
top4(19) → 1
(4) BOUNDS(1, n^1)
(5) CpxTrsToCdtProof (BOTH BOUNDS(ID, ID) transformation)
Converted Cpx (relative) TRS to CDT
(6) Obligation:
Complexity Dependency Tuples Problem
Rules:
top(ok(z0)) → top(active(z0))
top(mark(z0)) → top(proper(z0))
proper(b) → ok(b)
proper(a) → ok(a)
f(ok(z0), ok(z1), ok(z2)) → ok(f(z0, z1, z2))
f(z0, mark(z1), z2) → mark(f(z0, z1, z2))
active(b) → mark(a)
Tuples:
TOP(ok(z0)) → c(TOP(active(z0)), ACTIVE(z0))
TOP(mark(z0)) → c1(TOP(proper(z0)), PROPER(z0))
PROPER(b) → c2
PROPER(a) → c3
F(ok(z0), ok(z1), ok(z2)) → c4(F(z0, z1, z2))
F(z0, mark(z1), z2) → c5(F(z0, z1, z2))
ACTIVE(b) → c6
S tuples:
TOP(ok(z0)) → c(TOP(active(z0)), ACTIVE(z0))
TOP(mark(z0)) → c1(TOP(proper(z0)), PROPER(z0))
PROPER(b) → c2
PROPER(a) → c3
F(ok(z0), ok(z1), ok(z2)) → c4(F(z0, z1, z2))
F(z0, mark(z1), z2) → c5(F(z0, z1, z2))
ACTIVE(b) → c6
K tuples:none
Defined Rule Symbols:
top, proper, f, active
Defined Pair Symbols:
TOP, PROPER, F, ACTIVE
Compound Symbols:
c, c1, c2, c3, c4, c5, c6
(7) CdtLeafRemovalProof (BOTH BOUNDS(ID, ID) transformation)
Removed 3 trailing nodes:
PROPER(a) → c3
PROPER(b) → c2
ACTIVE(b) → c6
(8) Obligation:
Complexity Dependency Tuples Problem
Rules:
top(ok(z0)) → top(active(z0))
top(mark(z0)) → top(proper(z0))
proper(b) → ok(b)
proper(a) → ok(a)
f(ok(z0), ok(z1), ok(z2)) → ok(f(z0, z1, z2))
f(z0, mark(z1), z2) → mark(f(z0, z1, z2))
active(b) → mark(a)
Tuples:
TOP(ok(z0)) → c(TOP(active(z0)), ACTIVE(z0))
TOP(mark(z0)) → c1(TOP(proper(z0)), PROPER(z0))
F(ok(z0), ok(z1), ok(z2)) → c4(F(z0, z1, z2))
F(z0, mark(z1), z2) → c5(F(z0, z1, z2))
S tuples:
TOP(ok(z0)) → c(TOP(active(z0)), ACTIVE(z0))
TOP(mark(z0)) → c1(TOP(proper(z0)), PROPER(z0))
F(ok(z0), ok(z1), ok(z2)) → c4(F(z0, z1, z2))
F(z0, mark(z1), z2) → c5(F(z0, z1, z2))
K tuples:none
Defined Rule Symbols:
top, proper, f, active
Defined Pair Symbols:
TOP, F
Compound Symbols:
c, c1, c4, c5
(9) CdtRhsSimplificationProcessorProof (BOTH BOUNDS(ID, ID) transformation)
Removed 2 trailing tuple parts
(10) Obligation:
Complexity Dependency Tuples Problem
Rules:
top(ok(z0)) → top(active(z0))
top(mark(z0)) → top(proper(z0))
proper(b) → ok(b)
proper(a) → ok(a)
f(ok(z0), ok(z1), ok(z2)) → ok(f(z0, z1, z2))
f(z0, mark(z1), z2) → mark(f(z0, z1, z2))
active(b) → mark(a)
Tuples:
F(ok(z0), ok(z1), ok(z2)) → c4(F(z0, z1, z2))
F(z0, mark(z1), z2) → c5(F(z0, z1, z2))
TOP(ok(z0)) → c(TOP(active(z0)))
TOP(mark(z0)) → c1(TOP(proper(z0)))
S tuples:
F(ok(z0), ok(z1), ok(z2)) → c4(F(z0, z1, z2))
F(z0, mark(z1), z2) → c5(F(z0, z1, z2))
TOP(ok(z0)) → c(TOP(active(z0)))
TOP(mark(z0)) → c1(TOP(proper(z0)))
K tuples:none
Defined Rule Symbols:
top, proper, f, active
Defined Pair Symbols:
F, TOP
Compound Symbols:
c4, c5, c, c1
(11) CdtUsableRulesProof (EQUIVALENT transformation)
The following rules are not usable and were removed:
top(ok(z0)) → top(active(z0))
top(mark(z0)) → top(proper(z0))
f(ok(z0), ok(z1), ok(z2)) → ok(f(z0, z1, z2))
f(z0, mark(z1), z2) → mark(f(z0, z1, z2))
(12) Obligation:
Complexity Dependency Tuples Problem
Rules:
active(b) → mark(a)
proper(b) → ok(b)
proper(a) → ok(a)
Tuples:
F(ok(z0), ok(z1), ok(z2)) → c4(F(z0, z1, z2))
F(z0, mark(z1), z2) → c5(F(z0, z1, z2))
TOP(ok(z0)) → c(TOP(active(z0)))
TOP(mark(z0)) → c1(TOP(proper(z0)))
S tuples:
F(ok(z0), ok(z1), ok(z2)) → c4(F(z0, z1, z2))
F(z0, mark(z1), z2) → c5(F(z0, z1, z2))
TOP(ok(z0)) → c(TOP(active(z0)))
TOP(mark(z0)) → c1(TOP(proper(z0)))
K tuples:none
Defined Rule Symbols:
active, proper
Defined Pair Symbols:
F, TOP
Compound Symbols:
c4, c5, c, c1
(13) CdtRuleRemovalProof (UPPER BOUND(ADD(n^1)) transformation)
Found a reduction pair which oriented the following tuples strictly. Hence they can be removed from S.
F(ok(z0), ok(z1), ok(z2)) → c4(F(z0, z1, z2))
TOP(ok(z0)) → c(TOP(active(z0)))
We considered the (Usable) Rules:
proper(b) → ok(b)
active(b) → mark(a)
proper(a) → ok(a)
And the Tuples:
F(ok(z0), ok(z1), ok(z2)) → c4(F(z0, z1, z2))
F(z0, mark(z1), z2) → c5(F(z0, z1, z2))
TOP(ok(z0)) → c(TOP(active(z0)))
TOP(mark(z0)) → c1(TOP(proper(z0)))
The order we found is given by the following interpretation:
Polynomial interpretation :
POL(F(x1, x2, x3)) = x1
POL(TOP(x1)) = x1
POL(a) = 0
POL(active(x1)) = x1
POL(b) = [1]
POL(c(x1)) = x1
POL(c1(x1)) = x1
POL(c4(x1)) = x1
POL(c5(x1)) = x1
POL(mark(x1)) = [1] + x1
POL(ok(x1)) = [1] + x1
POL(proper(x1)) = [1] + x1
(14) Obligation:
Complexity Dependency Tuples Problem
Rules:
active(b) → mark(a)
proper(b) → ok(b)
proper(a) → ok(a)
Tuples:
F(ok(z0), ok(z1), ok(z2)) → c4(F(z0, z1, z2))
F(z0, mark(z1), z2) → c5(F(z0, z1, z2))
TOP(ok(z0)) → c(TOP(active(z0)))
TOP(mark(z0)) → c1(TOP(proper(z0)))
S tuples:
F(z0, mark(z1), z2) → c5(F(z0, z1, z2))
TOP(mark(z0)) → c1(TOP(proper(z0)))
K tuples:
F(ok(z0), ok(z1), ok(z2)) → c4(F(z0, z1, z2))
TOP(ok(z0)) → c(TOP(active(z0)))
Defined Rule Symbols:
active, proper
Defined Pair Symbols:
F, TOP
Compound Symbols:
c4, c5, c, c1
(15) CdtRuleRemovalProof (UPPER BOUND(ADD(n^1)) transformation)
Found a reduction pair which oriented the following tuples strictly. Hence they can be removed from S.
F(z0, mark(z1), z2) → c5(F(z0, z1, z2))
We considered the (Usable) Rules:none
And the Tuples:
F(ok(z0), ok(z1), ok(z2)) → c4(F(z0, z1, z2))
F(z0, mark(z1), z2) → c5(F(z0, z1, z2))
TOP(ok(z0)) → c(TOP(active(z0)))
TOP(mark(z0)) → c1(TOP(proper(z0)))
The order we found is given by the following interpretation:
Polynomial interpretation :
POL(F(x1, x2, x3)) = [2]x2
POL(TOP(x1)) = 0
POL(a) = 0
POL(active(x1)) = 0
POL(b) = 0
POL(c(x1)) = x1
POL(c1(x1)) = x1
POL(c4(x1)) = x1
POL(c5(x1)) = x1
POL(mark(x1)) = [1] + x1
POL(ok(x1)) = x1
POL(proper(x1)) = 0
(16) Obligation:
Complexity Dependency Tuples Problem
Rules:
active(b) → mark(a)
proper(b) → ok(b)
proper(a) → ok(a)
Tuples:
F(ok(z0), ok(z1), ok(z2)) → c4(F(z0, z1, z2))
F(z0, mark(z1), z2) → c5(F(z0, z1, z2))
TOP(ok(z0)) → c(TOP(active(z0)))
TOP(mark(z0)) → c1(TOP(proper(z0)))
S tuples:
TOP(mark(z0)) → c1(TOP(proper(z0)))
K tuples:
F(ok(z0), ok(z1), ok(z2)) → c4(F(z0, z1, z2))
TOP(ok(z0)) → c(TOP(active(z0)))
F(z0, mark(z1), z2) → c5(F(z0, z1, z2))
Defined Rule Symbols:
active, proper
Defined Pair Symbols:
F, TOP
Compound Symbols:
c4, c5, c, c1
(17) CdtRuleRemovalProof (UPPER BOUND(ADD(n^1)) transformation)
Found a reduction pair which oriented the following tuples strictly. Hence they can be removed from S.
TOP(mark(z0)) → c1(TOP(proper(z0)))
We considered the (Usable) Rules:
proper(b) → ok(b)
active(b) → mark(a)
proper(a) → ok(a)
And the Tuples:
F(ok(z0), ok(z1), ok(z2)) → c4(F(z0, z1, z2))
F(z0, mark(z1), z2) → c5(F(z0, z1, z2))
TOP(ok(z0)) → c(TOP(active(z0)))
TOP(mark(z0)) → c1(TOP(proper(z0)))
The order we found is given by the following interpretation:
Polynomial interpretation :
POL(F(x1, x2, x3)) = [2]x3
POL(TOP(x1)) = [2]x1
POL(a) = 0
POL(active(x1)) = x1
POL(b) = [1]
POL(c(x1)) = x1
POL(c1(x1)) = x1
POL(c4(x1)) = x1
POL(c5(x1)) = x1
POL(mark(x1)) = [1] + x1
POL(ok(x1)) = x1
POL(proper(x1)) = x1
(18) Obligation:
Complexity Dependency Tuples Problem
Rules:
active(b) → mark(a)
proper(b) → ok(b)
proper(a) → ok(a)
Tuples:
F(ok(z0), ok(z1), ok(z2)) → c4(F(z0, z1, z2))
F(z0, mark(z1), z2) → c5(F(z0, z1, z2))
TOP(ok(z0)) → c(TOP(active(z0)))
TOP(mark(z0)) → c1(TOP(proper(z0)))
S tuples:none
K tuples:
F(ok(z0), ok(z1), ok(z2)) → c4(F(z0, z1, z2))
TOP(ok(z0)) → c(TOP(active(z0)))
F(z0, mark(z1), z2) → c5(F(z0, z1, z2))
TOP(mark(z0)) → c1(TOP(proper(z0)))
Defined Rule Symbols:
active, proper
Defined Pair Symbols:
F, TOP
Compound Symbols:
c4, c5, c, c1
(19) SIsEmptyProof (BOTH BOUNDS(ID, ID) transformation)
The set S is empty
(20) BOUNDS(1, 1)